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Propagation Characteristics of Single Mode Optical
Fibers with Arbitrary Index Profiles: A Simple
Numerical Approach

ENAKSHI KHULAR SHARMA, ANURAG SHARMA, anp 1. C. GOYAL

Abstract—We present here a rapidly converging numerical procedure
for the direct evaluation of the propagation constant and its first and
second derivatives in single mode optical fibers with arbitrary refractive
- index profiles. To illustrate the procedure we have also used it to eval-
uate the propagation constant and its derivatives in single mode optical
fibers with power law profiles in the presence of a Gaussian axial index
dip, and hence, studied the effect of a dip on the dispersion characteris-
tics of the fibers.

INTRODUCTION

T is now well known that the scalar wave equation can be

used to determine the propagation characteristics of graded
index optical fibers in most regions of practical interest. It
may, however, be mentioned that analytical expressions for
the propagation constants and their derivatives with respect to
frequency are available only for an infinitely extended para-
bolic profile [1]. For a step profile or a cladded parabolic
profile one has transcendental equations determining the
propagation constant; the derivatives, however, can be ex-
pressed as analytical expressions in terms of the propagation
constant. For all other profiles one has to numerically solve
the wave equation to calculate the propagation constant as a
function of frequency and then calculate the first and second
derivatives required to evaluate the group velocities and dis-
persion coefficient. Such a numerical calculation of the deriv-
atives requires the calculation of the propagation constant to
a considerable accuracy. We may point out that the various
approximate and semianalytical techniques usually give suffi-
cient accuracy in the calculation of the propagation constant,
but are, in general, not sufficiently accurate to obtain its first
and second derivatives [2].

In this paper we present a direct numerical procedure to
calculate the propagation constant and its first and second
derivatives accurately in single mode optical fibers with any
arbitrary index profile; the numerical method is similar to that
used in [3] for the calculation of the cutoff frequency for
single mode operation. As an illustration of the procedure, we
have also used it to evaluate the propagation constant and its
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derivatives in single mode optical fibers in the presence of an
axial dip, and hence, studied the effect of the dip on the disper-
sion characteristics of the fiber,

PROCEDURE
For an optical fiber with refractive index profile given by
n*(Ry=n% - (n? -n3)6f(R) R<1
=n R>1 )

(where R = r/a, a being the core radius of the fiber, f (R) defines
the profile shape, and § defines the “index jump” at the core
cladding interface) the scalar wave equation for the funda-
mental mode can be written as

d*y 1 dy

R +7€E+v2 {1-p-8fR)}y=0 R<1 2)
where v and b are normalized parameters defined as

v=Fkoa(n} - n3)'/* ®3)
and

b=1-uv*; u=koa(n? - pYk2)/? )

B being the propagation constant and %, the free space wave
number. The boundary conditions on y(R)atR=0and R =1
are given by [4]

(2) <o s (18] . w0
dR /g -0 ¥ dR Jr= Ko (w)

where

&)

w? =92 - u?,

Following the Ricatti transformation as in {3], we can re-
duce (2) to the following first order differential equation

% =v?8f(R) - v*(1 - b) - G/R - G* (6)
where

GR)= %% @)
and the boundary conditions transform to

GR=0)=0 (82)
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and

wkK,(w)
K,(w)

Further, by differentiating (6) and (8), we can write the fol-
lowing differential equations to be solved along with the asso-
ciated boundary conditions to obtain the derivatives of the
propagation constant, i.e., b’ and b” (the prime denotes differ-
entiation with respect to v).

GR=1)=- (8b)

For b’
daG’ G'
= ro 2 - p- +u2p'
= = "2GG' - 2~ 20[1- b~ 8f(R)] +v’b ©)
with the boundary conditions
G'R=0)=0 (10a)
and
Kz(w)] u2b'[ K%(w)
G'R=1)=vb |1 - ——|+ 1-— . (10b
®=D= [ cwl 2 ' reml ¢
For b"
dG" " . G"
- G - — - -
R -2G"? - 26 R 2[1 - &~ 8f(R)]
+40b" + v*b" (11)-
with the boundary conditions
G"R=0)=0 (12a)
and

" — '__Kz_ r Kl(w) _ K%(W) K (W)
G"R=1)=— (2b + vb')? oK () {1 Ko " WKO(W)}

1(W) v’d"
+{1 K )}{b+2b+ 2}

The procedure to obtain the propagation constant and its
derivatives accurately now requires the solution of the three
boundary value problems in sequence. A close look at (6)
shows that the last term on the RHS is indeterminate at R = 0
and hence, one has to take the limiting form of the equation
at R =0. Similar terms also occur in (9) and (10) and it can be
easily shown [3] that the limiting forms are

(12b)

dG _ i i
(_‘52—>R=o = [vzﬁf(O) 02(1 )1 /2 (13)
dG' v*p’
(E’E)Rz =——-vl(1-b)-58f(0)] (14)
and
aG"\  _ v ,
(Ek—)ho" 5~ t2b - [(1-8)- 87 (0] (15)

NUMERICAL ExaMPLES AND DISCUSSION

To illustrate the use of the procedure and test its conver-
gence, we carried out numerical calculations for single mode
fibers with various refractive index profiles. The steps in the
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calculation! of the propagation constants and its derivatives
are summarized below,

1) The transcendental equation (8b) is solved to obtain b;
the LHS is obtained by a numerical solution of the first order
differential equation (6) with boundary condition (8a) at R =0
and step size & =1/N (i.e., N is the number of divisions into
which the domain R =0 to R =1 is divided).

2) With b known, (6) is solved with step size # = 1/4N and
the numerical values of G(R) are stored at each step at 4NV dis-
crete points (R = 1/4N, 2/4N, - - -, 1) for subsequent calcula-
tions in steps 3), 4), and 5).

3) The transcendental equation (10b) is solved for b'; the
LHS is now obtained by solving (9) with boundary condition
(10a), step size & = 1/N and values of G(R) stored at step 2).

4) Again with the known value of &', (9) is solved and
numerical values of G'(R) stored at 2N discrete points R =
1/2N,2/2N, - -, 1 for use in step 5). (Step size h =1/2N)

5) Equation (12b) is solved to obtain »"; the LHS is now
obtained by solving (11) with boundary condition (12a), stored
values of G(R) and G'(R) from steps 2) and 4) and step size

=1/N.

Further,we also used the propagation constants so calculated
to evaluate the dispersion characteristics of single mode fibers
in terms of the dispersion coefficient s, defined as [6]

. 1.
{(1 - b)Yy, +bvy +2b¢ + —2—b0
e

s =
1 2
- (n2n2 +bg+ = b0> } (16)
e
where
Vi =n,-h'i+fl,? (17)
¢=nny - Nyl (18)
9 =n? - n} (19)

and the dot denotes differentiation with respect to A; b and
b can be related to b’ and b” as

(20)

o, fvi-vy @ 26 2) o 9 1)2
bepy (A22 & 20, 2N e (220,
”( g 62 a0 N RN 1)

It may be noted that (9)~(12) are so normalized that the
solutions depend only on normalized frequency v and normal-
ized profile shape f(R). Hence, once b, b, and b" are known
as functions of v for any profile, s as a function of A can be
calculated directly using the algebraic expression (16) with-
out any further computation. All the calculations carried out
correspond to silica fibers with GeO, doping in the core; the
refractive index n, corresponding to a 13.8 percent GeO, dop-
ing and the cladding index n, corresponding to silica. The

tWe used the fourth order Runge-Kutta procedure for the numerical
solution of the differential equation [5]. The number of points, step
size, storage, etc., are hence in reference to this procedure.
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TABLE 1
CONVERGENCE OF THE NUMERICAL RESULTS FOR A FEw TyPICAL
REFRACTIVE INDEX PROFILES

Profile Parameters N -3; = 1-h bt bt s(ps/km-nm)
2 0.792691 0.228573 0.040334 2.3377
3 0.793175 0.229558 0.042248 2.5371
ok =2 4 0.793366 0.229705 0.042293 2.5233
A = 1475 pm 5 0.793420 0.229735 0.042279 2.5164
a = 2.5 pm 6 0.793439 0,229744 0.042271 2,5135
v = 2,2371 8 0.793451 04229749 0.042263 2.5114
1C | 0.793454 0.229750 0.042261 2.5108
- 12 | 0.793454 0.229750 0.042261 2.5108
® 2 0.362587 0,168126 0.103860 1.1616
) 3 0.384163 0.487228 0.126158 2.1317
é; o* = 0O 4 0.387402 0.189882 0.129282 2.6016
“ A = feb pm 5 0.388110 0.190491 0.130020 2.7170
a = 2.5 um 6 0.388319 0.190682 0.130257 2.7551
v = 2.7743 8 0.388428 0.190790 0.130394 2.7777
10 | 0.388452 0.190815 04130427 2.7832
12 | 0,388459 0.190824 0,130438 2,7850
2 0.826535 0.164472 0.036558 0.3278
3 0.827699 0.165937 0.037956 0.2669
o X =2 4 0.828562 0.166325 0.037638 0.4146
:Tw p=d= 0,4 5 0.828872 0,166436 0.037479 0.4730
ol A= 1.6 um 6 0.828996 0.166477 0.037408 0.4975
&;5 a = 2,5 um 8 0.829082 0.166503 0.037357 0.5144
'Q v = 2.4373 10 | 0.829105 0.166510 0.037341 0.5193
= 12 | 0.829113 0.166513 0,037336 0.5210
A 2 0,433647 0.144542 0,087801 3.9108
s 3 0.451618 0.158319 0.102940 1.5008
W * = oo 4 0.455619 0.160700 0.105473 1.1101
2 p=d= 0.4 5 0.456671 0.161287 0.106102 1.,0117
il A= 1.35 pm 6 0.457026 0.161481 0.106310 0.9791
a= 2.5 um 8 0,457234 0.161595 0,106432 0.9599
v = 2,8749 10 | 0.457287 0.161624 0.106462 0.9553
12 | 0.457306 0.161633 0.106472 0.9537

b~ e 4 A

Sellmeier coefficients for the calculation of n,, n,, and their
derivatives were taken from [7].

Table I shows the convergence of the numerical results with
N (i.e., the number of divisions used in the numerical solution)
for a few typical refractive index profiles, including profiles
with a Gaussian® refractive index dip at the axis. In the pres-
ence of the dip the index profile can be written as

7 (R)=r3(R) - (n} - n)p(e™®1%" - /4"y R<1
R>1(2)
where n3(R) is the refractive index profile in the absence of
the dip and p and d define the fractional dip depth and frac-
tional dip width, respectively. The profile is shown in Fig. 1.

As can be seen from the table, extremely good accuracy is
obtained in the calculated values of the propagation constant b
and its derivatives 5’ and b” with N < 8 or step size & > 0.125.
In fact, the calculation of the dispersion coefficient shows that
even when the propagation constants are calculated with N = 4
the error is only ~0.2 ps/km - nm.

Further, we also carried out calculations to study the effect
of the dip on the dispersion characteristics of the fibers. Fig.

=n%

21In [8] it has been shown that the observed dip profiles can be well
matched to a Gaussian profile.

1
i
|
i i

1.0 05

Fig.1. The continuous curve shows the refractive index profile of a
parabolic graded index fiber in the presence of a Gaussian axial index

dip given by (22). The dashed curve shows the profile in the absence
of the dip.

2(a) and (b) show the variation of s with A for powerlaw
profile fibers of radii 2.5 um and 2.0 um, respectively, in the
presence and absence of the dip. As can be seen, the dip does
not always cause the shift of the zero dispersion wavelength
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in presence of dip (P=d=04)
in absence of dip

radius =25 um

s (ps/km-nm)

@)

in presence of dip (P=d=0.4)
In absence of dip

radius =20 um

s {ps/km-nm)

-20L

(b)

Fig. 2. The variation of the dispersion coefficient s with wavelength A for GeO, doped silica fibers with power law refrac-
tive index profiles (i.e., f(R) =R®) in the presence (dashed curves) and absence (continuous curves) of a dip; the dip
parameters for the calculation are p =d = 0.4 and the refractive indexes n; and n, correspond to a 13.8 percent GeO,
doping in silica and pure silica, respectively. (a) cotresponds to a fiber radius 2.5 um and (b) corresponds to a radius of

2.0 um. Note that the shift of the zero dispersion wavelength for step fibers (« = =) is in opposite directions in the two
cases.

to shorter wavelengths as predicted by the earlier perturba-
tion calculation [9], but is a sensitive function of the profile
parameters. In fact, to study the validity of the perturbation
calculation, we carried out calculations of the “zero dispersion
wavelength shift” corresponding to the earlier pertubation cal-
culations.® The results are tabulated in Table II along with
the earlier results of [9]. As expected, the predictions from
the perturbation calculation are correct only for small dip
values; for larger dips it is necessary to carry out an exact nu-
merical calculation.

Recently, Sammut and Pask [10] reported a numerical
method which transforms the second order scalar differential
equation into a first order difference equation instead of a first
order differential equation. We could as well use the differ-

3The dip profile used in [9] does not have the term e U of (22).

ence equation procedure to solve (2). In fact, to compare the
convergence of the various procedures, we did transform (6)
into a difference equation by replacing (dG/dR) by its central
difference value to obtain®

WR+@=%{HMHU-HU—m—G%m-ggQ}

+GR - h) (23)

4Recently Rose and Mitra [11] reported the transformation of the
Ricatti equation (6) into a difference equation using certain approxi-
mations. The so obtained equation differs from (24) and can be shown
to be identical to that obtained by Sammut and Pask [10]. Here we
also show that the convergence of the difference equation procedure is
faster if the difference equation (24) is used instead of the equation in
[10] and [11].
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TABLE 11
COMPARISON OF RESULTS OBTAINED BY THE PERTURBATION CALCULATION [9]
WITH PRESENT NUMERICAL RESULTS FOR THE SHIFT IN THE ZERO
Di1spERSION WAVELENGTH DUE TO THE AXIAL INDEX D1p
IN SINGLE MoDE FIBERS

AX = A (uith dip) — A (without dip)

Core d = 0,1 d = 03 d = 0,5
Radius P Present| Pertn. | Present] Pertn.| Present] Pertn,
{um) Calcs,

01 1.2 1.2 646 T+3 7.1 6.9
2,0 0.3 3.3 3.7 15.4 2142 15.5 19.8

0,5 542 6e2 1847 3445 167 31.8

0.1 0.6 0,5 246 23 2.7 0.9
2.5 0.3 144 1.4 2.2 6.9 0.0 2.7

0.5 ~1e2 243 ~441 11.4 =-12,0 445

1

TABLE III
CoMpARISONS OF %°/v> WitH N For THE DIFFERENCE EQUATION AND
RunGe-KuTTA PROCEDURES

N Difference Equation Runge-Kutta
procedure _
Using (24) as in [10] Procedurse to
solve (6}

2 0.60608 0,58323 0.63271

3 8,62006 0.611504 0.63572

4 0.62622 0.62250 0.63655

S 0.62949 0.62766 0.63675

6 0.63154 0.63047 0.63682

8 0.63372 0.63327 0.63686

10 0.63481 0,63457 0.63687

16 . 063605 0.,63598 0,63688

24 0.,63650 0.63648 0,63688

32 0.63667 0.63665 U.63688

40 0.63674 0.,63673

60 D.63682 0.63682

100 0.63686 0.63686

or, denoting G(R;) and f(R;) by G; and f;, respectively, with Table III shows the convergence of a typical set of calcula-
R; =ih, we can write (23) as tions of the propagation constant b using the two difference
_ 2 2 2 s , equation procedures and the Runge-Kutta procedure. The

Grey =20 W8/ =v*(1=0) - Gi = Gifit} + Gooy 121 o ations correspond to a parabolic index fitI:er [f(R)=R?]
(24) with v=3.0. As can be seen, of the two difference equation

with the boundary conditions at R = 0 giving procedures, the one using (24) shows a more rapid convergence
G, =0 (25) compared to the one using the difference equation of [10].
The Runge-Kutta procedure however, shows an extremely
) 5 rapid convergence. For example, with N =4 in the RK pro-
G,=h {-U——Sfo _ U_(l _ b)} ) (26) cedure, one obtains a better accuracy than with N = 16 in the
2 2 difference equation procedure. Hence, even though the Runge-

and
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Kutta procedure requires a greater number of evaluations as

compared to the difference equation method for a given N,
these are more than compensated by the extremely small value
of NV required to attain good accuracy. '

Very recently, another numerical procedure to calculate b,
b', and b" has been reported by Cohen and Mammel [12].
In this procedure, b is calculated by a direct numerical inte-
gration of a second order differential equation obtained from
the scalar wave equation by suitably modifying it to facilitate
integration for all modes. To calculate ', the stationarity
property of the Rayleigh quotient has been used, which gives
b’ in terms of integrals involving the profile function f(R) and
the field Y (R); these mtegrals however, have to be evaluated
numerically. Further, b is obtained by a numerical differenti-
ation of the results obtained for »' as a function of v. The
present procedure, instead, uses similar procedures for calcu-
lation of b, b', and " and hence involves less computational
effort.

In summary, we have presented a numerical procedure to
evaluate the propagation constant and its derivatives for a
single mode fiber with an arbitrary index profile, The pro-
cedure shows a rapid convergence with $tep size used in the
numerical solution of the differential equation by the Runge-
Kutta procedure. To illustrate the procedure, we also used it
to evaluate the effect of an axial dip on the dispersion charac-

teristics of single mode fibers. Our results, in addition to de-

scribing the effect of the dip on the dispersion characteristics
also enable one to determine the validity of the perturbation
approach used earlier [9]; indeed, for large dips, the perturba-
tion theory results are quite inaccurate and one should use
numerical methods. Further, in an attempt to compare the
convergence of the Runge-Kutta procedure with an earlier
reported difference equation method [10], we have also ob-
tained a difference equation which gives more rapid conver-
gence than the difference equation in [10]. However, the
extremely rapid convergence of the Runge-Kutta procedure
still makes it more suitable than any of the difference equation
procedures.
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