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Propagation Characteristics of Single Mode Optical
Fibers with Arbitrary Index Profiles: A Simple

Numerical Approach

ENAKSHI KHULAR SHARMA, ANURAG SHARMA, AND I. C. GOYAL

Abstract–We present here a rapidly converging numericrd procedure
for the direct evaluation of the propagation constant and its first and

second derivatives in single mode optical fibers with arbitrary refractive

index profiies. To illustrate the procedure we have also used it to eval-
uate the propagation constant and its derivatives in single mode optical
fibers with power law profiles in the presence of a Gaussian axial index
dip, and hence, studied the effect of a dip on the dispersion characteris-
tics of the fibers.

INTRODUCTION

I T is now well known that the scalar wave equation can be

used to determine the propagation characteristics of graded

index optical fibers in most regions of practical interest. It

may, however, be mentioned that analytical expressions for

the propagation constants and their derivatives with respect to

frequency are available only for an infinitely extended para-

bolic profile [1]. For a step profile or a cladded parabolic

profde one has transcendental equations determining the

propagation constant; the derivatives, however, can be ex-

pressed as analytical expressions in terms of the propagation

constant. For all other profiles one has to numerically solve

the wave equation to calculate the propagation constant as a

function of frequency and then calculate the first and second

derivatives required to evaluate the group velocities and dis-

persion coefficient. Such a numerical calculation of the deriv-

atives requires the calculation of the propagation constant to

a considerable accuracy. We may point out that the various

approximate and semianalytical techniques usually give suffi-

cient accuracy in the calculation of the propagation constant,

but are, in general, not sufficiently accurate to obtain its first

and second derivatives [2].

In this paper we present a direct numerical procedure to

calculate the propagation constant and its first and second

derivatives accurately in single mode optical fibers with any

arbitrary index profile; the numerical method is similar to that

used in [3] for the calculation of the cutoff frequency for

single mode operation. As an illustration of the procedure, we

have also used it to evaluate the propagation constant and its

Manuscript received March 2, 1982; revised May 27, 1982. This work
was supported in part by the Council of Scientific and Industrial
Research, India.

E. K. Sharma and A. Sharma are with the Department of Physics, In-
dian Institute of Technology, New Delhi, India.

I. C. Goyal is with the Department of Physics, Indian Institute of
Technology, New Delhi, India, on leave at the Institut fur Hochfre-
quenztechnik, Technische Universitat, Braunschweig, Germany,

derivatives in single mode optical fibers in the presence of an

axial dip, and hence, studied the effect of the dip on the disper-

sion characteristics of the fiber.

PROCEDURE

For an optical fiber with refractive index profde given by

n2(R) = rz~ - (rz~ - n~)8-f(R) R <1

= n; R>l (1)

(where R = r/a, a being the core radius of the fiber,~(R) defines

the profile shape, and 8 defines the “index jump” at the core

cladding interface) the scalar wave equation for the funda-

mental mode can be written as

d2 $
—+$#+u2{l -b-ti~(R)}J= O R<l
dR2

(2)

where u and b are normalized parameters defined as

u = lcoa(n~ - n~)l/2 (3)

and

b=~-~z/vz; (4)u = koa(rr~ - /32/lc~)112

D being the propagation constant and k. the free space wave

number. The boundary conditions on I)(R) at R = O and R = 1

are given by [4]

()d+

()

1 d~
=0 and ——

= _ WK1 (W)

=R=~ I) dR ~=1 K. (W)
(5)

where

w2=v2_u2

Following the Ricatti transformation as in [3] , we can re-

duce (2) to the following first order differential equation

~ = u28f(R) - Vz(l - b) - G/R - G2 (6)

where

(7)

and the boundary conditions transform to

G(R=O)=O (8a)
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and

G(R= l)=---
o

(8b)

Further, by differentiating (6) and (8), we can write the fol-

lowing differential equations to be solved along with the asso-

ciated boundary conditions to obtain the derivatives of the

propagation constant, i.e., b’ and b“ (the prime denotes differ-

entiation with respect to u).

For b’

dG ‘
—=-2GG’ - ~- 2u[1 - b- 6f(R)] +u2b’
dR

with the boundary conditions

G’(R = O) = O

and

For b“

dG”—-_= -2G’2 - 2GG” -$ 2[1 -b-~f(R)]
dR

+ 4vb’ + v2b”

with the boundary conditions

G“(R=O)=O

and

(9)

(lOa)

(lOb)

(11)

(12a)

G“(R = l)=~(2b +ub’)2
K1 (W)

{

~ _ K;(w) K, (W)

WKO (W) 1Kg (W) + WKO (W)

‘[+*}l+2”b’+~}

(12b)

The procedure to obtain the propagation constant and its

derivatives accurately now requires the solution of the three

boundary value problems in sequence. A close look at (6)

shows that the last term on the RHS is indeterminate at R = O

and hence, one has to take the limiting form of the equation

at R = O. Similar terms also occur in (9) and (1 O) and it can be

easily shown [3] that the limiting forms are

()dG

-Z ~=~
= [u26f(0) - U2(1 - b)] /2

(-)

dG’

dR ~..
= ~ - u[(l - b) - 8f(0)]

(13)

(14)

and

(–)dG”

dR R=~
= ~ + 2ub’ - [(1 - b) - t5f(0)] . (15)

NUMERICAL EXAMPLES AND DISCUSSION

To illustrate the use of the procedure and test its conver-

gence, we carried out numerical calculations for single mode

fibers with various refractive index profiies. The steps in the

calculation of the propagation constants and its derivatives

are summarized below.

1) The transcendental equation (8b) is solved to obtain b;

the LHS is obtained by a numerical solution of the first order

differential equation (6) with boundary condition (8a) at R = O

and step size h = 1/N (i.e., N is the number of divisions into

which the domain R = O to R = 1 is divided).

2) With b known, (6) is solved with step size h = l/4N and

the numerical values of G(R) are stored at each step at 4N dis-

crete points (R = i /4N, 2/4N, . . “ , 1) for subsequent calcula-

tions in steps 3), 4), and 5].

3) The transcendental equation (lOb) is solved for b’; the

LHS is now obtained by ‘solving (9) with boundary condition

(lOa), step size h = l/N and values of G(R) stored at step 2).

4) Again with the known value of b’, (9) is solved and

numerical values of G’(R) stored at 2N discrete points R =

l/2N, 2/2N, “ . . . 1 for use in step 5). (Step size h = l/2N.)

5) Equation (12b) is solved to obtain b“; the LHS is now

obtained by solving ( 11) with boundary condition (1 2a), stored

values of G(R) and G ‘(R) from steps 2) and 4) and step size

h = l/N.

Further, we also used the propagation constants so calculated

to evaluate the dispersion characteristics of single mode fibers

in terms of the dispersion coefficients, defined as [6]

h
s = _—

{

(1 - b)v2 + bv, + 2b@+ ;;6
Cne

( )}

2

-$ n2n2+b$+~b8 (16)

where

vi = nirii+n: (17)

@=nlril - n2i2 (18)

tl=n~-n$ (19)

and the dot denotes differentiation with respect to A; b and

b can be related to b’ and b“ as

()b=b’v !?-~
oh

(20)

It may be noted that (9)-(12) are so normalized that the

solutions depend only on normalized frequency u and normal-

ized profile shape f(R). Hence, once b, b’, and b“ are known

as functions of v for any profile, s as a function of h can be

calculated directly using the algebraic expression (16) with-

out any further computation. All the calculations carried out

correspond to silica fibers with Ge02 doping in the core; the
refractive index n ~ corresponding to a 13.8 percent GeOz dop-

ing and the cladding index rrT corresponding to silica. The

~We used the fourth order Runge-Kutta procedure for the numerical

solution of the differential equation [5]. The number of points, step
size, storage, etc., are hence in reference to this procedure.
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TABLE I
CONVERGENCE OF THENUMERICALRESULTSFOR A FEW TYPICAL

Parameters

M.cm

X=lo4rm

a = 2.5~m

v = 2.7743

d=7-

p=d= 0.4

~. 1.6~m

a = 2.5Pm

u = 2.4373

Gi. m

p=d= 0.4

A= 1.35pm

a= 2.5 pm

u = 2.8749

--——

REFRACTIVE INDEX PROFILES
—

N

2

3

4

5

6

8

Ic

12
.

2

3

4

5

6

8

10

12.

2

3

4

5

6

8

10

12
—

2

3

4

5

6

8

10

12
— ..

“2

~ “ ‘-b
b! -bll

0.792691 0.228573 0.040334

0.793175 0.229558 0.042248

0.793366 0.229705 0.042293

0.793420 0.229735 0.042279

0.793439 0.229744 0.042271

0.793451 0.229749 0.042263

0.793454 0.229750 0.042261

0.793454 0.229750 0.042261

0.362587 0.168126 0.103860

0.384163 0.187228 0.126158

0.3874G2 0.189882 0.129282

0.388110 0.190491 0.130020

0.388319 0.190682 0.130257

0.388428 0.190790 0.130394

0.388452 0.190815 0.130427

0.388459 0.190824 0.130438

0.826535 0.164472 0.036558

0.827699 0.165937 0.037956

0.828562 0.166325 0.037638

0.828872 09166436 0.037479

0.828996 0.166477 0.037408

0.829082 0.166503 0.037357

0.829105 0.166510 0.037341

0.829113 0.166513 0.037336

0.433647 0.144542 0.087801

0.451618 0.158319 0.102940

0.455619 0.160700 0.105473

0.456671 0.161287 0.106102

0.457026 0.161481 O.1O63IO

0.457234 0.161595 0.106432

0.457287 0.161624 0.106462

0.457306 0.161633 0.106472

Sellmeier coefficients for the calculation of nl, nz, and their

derivatives were taken from [7] .

Table I shows the convergence of the numerical results with

IV (i.e., the number of divisions used in the numerical solution)

for a few typical refractive index profdes, including profiles

with a Gaussian2 refractive index dip at the axis. In the pres-

ence of the dip the index profde can be written as

n2(R) = iz~@) - (n; - n~)p(e-R2/d2 - e-1/d2) R <1

= n; R >1 (22)

where nfi(R) is the refractive index profde in the absence of

the dip and p and d define the fractional dip depth and frac-
tional dip width, respectively. The profile is shown in Fig. 1.

As can be seen from the table, extremely good accuracy is

obtained in the calculated values of the propagation constant b

and its derivatives b’ and b“ with N S 8 or step size h 20.125.

In fact, the calculation of the dispersion coefficient shows that

even when the propagation constants are calculated with N = 4

the error is only -0.2 ps/km . nm.

Further, we also carried out calculations to study the effect

of the dip on the dispersion characteristics of the fibers. Fig.

ZIn 18] it has been shown that the observed dip profikx can be we~
matched to a Gaussianprofile.

~(ps/km-nm)

2.3377

2.5371

2.5233

2.5164

2.5135

2.5114

2.5108

2.5108

1.1616

2.13j7

2.6016

2.7170

2.755;

2.7777

2.7832

2.7850

0.3278

0.2669

0.4146

0.4730

0.4975

0.5144

0.5193

0.5210

~

1.5008

1.1101

1.0117

0.9791

0.9599

0.9553

0.9537

I 2
h

-.-/ “i–––____
1

, ,

1.0 05 0 05 10
R

Fig. 1. The continuous curve shows the refractive index profile of a
parabolic graded index fiber in the presenw of a Gaussian axial index
dip given by (22). The dashed curve shows the profile in the absence
of the dip.

2(a) and (b) show the variation of s with A for power-law

profile fibers of radii 2.5 Rm and 2.0 #m, respectively, in the

presence and absence of the dip. As can be seen, the dip does

not always cause the shift of the zero dispersion wavelength
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.- ————m presence of dlp (P:d=O 4 )
in absence of dlp

radius :2.5 pm

(a)

\
30 – \

‘\\

\ ——————m presence of dip (p

m absence of dlp

radius = 20 #m

10 –

%
y

I
:0 j2 I

IL

. A—

-10 –

(step)

-20 L

=d=O.L )

(b)
Fig. 2. The variation of the dispersion coefficient s with wavelength k for Ge02 doped silica fibers with power law refrac-

tive index profiies (i.e., ~(l?) = Ra) in the presence (dashed curves) and absence (continuous curves) of a dip; the dip
parameters for the calculation are p = d = 0.4 and the refractive indexes nl and rz2 correspond to a 13.8 percent Ge02
doping in silica and pure silica, respectively. (a) corresponds to a fiber radius 2.5 pm and (b) corresponds to a radius of
2.0 ~m. Note that the shift of the zero dispersion wavelength for step fibers (a= M) is in opposite directions in the two
cases.

to shorter wavelengths as predicted by the earlier perturba-

tion calculation [9], but is a sensitive function of the profile

parameters. In fact, to study the vrdidity of the perturbation

calculation, we carried out calculations of the “zero dispersion

wavelength shift” corresponding to the earlier perturbation cal-

culations.s The results are tabulated in Table II along with

the earlier results of [9]. As expected, the predictions from

the perturbation calculation are correct only for small dip

values; for larger dips it is necessary to carry out an exact nu-
mericrd calculation.

Recently, Sammut and Pask [10] reported a numerical

method which transforms the second order scalar differential

equation into a first order difference equation instead of a first

order differential equation. We could as well use the differ-

sThe dip profile used in [9] doesnot havethe term e-lld2 of (22).

ence equation procedure to solve (2). In fact, to compare the

convergence of the various procedures, we did transform (6)

into a difference equation by replacing (dG/dR) by its central

difference value to obtain4

{
G(R +lz) = 2h u26.f(R)- U2(1 -b) - G2(R) - ~

}

+G(R - h) (23)

4 Recently Rose and Mitra [11] reported the transformation of the

Ricatti equation (6) into a difference equation using certain approxi-
mations. The so obtained equation differs fro-m (24) and can be shown
to be identical to that obtained by Sammut and Pask [10]. Here we
also show that the convergence of the difference equation procedure is
faster if the difference equation (24) is used instead of the equation in
[10] and [11].
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TABLE II
COMPARISONOFRESULTSOBTAINEDBYTHEPERTURBATIONCALCULATION [9]

WITH PRESENTNUMERICAL RESULTSFORTHESHIFT IN THE ZERO
DISPERSIONWAVELENGTHDUE TO THEAXIAL INDEX DIP

IN SINGLE MODE FIBERS

AX = A (Uith dip) _ AO(withO~t dip)
Core d = 0.1 d = 0.3 d = 0.5
Radius
(&m) p

Present Partn. Present Pertn. Present
Cal Cs.

Pertn.

0.1 1.2 1.2 6.6 7.3 7.1 6.9

2.0 0.3 3.3 3.7 15.4 21.2 15.5 19.8

0.5 5.2 6.2 18.7 34. s 16.7 31.8

0.1 0.6 0.5 2.6 2.3 2.7 0.9

2.5 0.3 1.4 1.4 2.2 6.9 0.0 2.7

0.5 -1.2 2.3 -4.1 11.4 - 12.0 4.5

t

TABLE 111
COMPARISONSOF u21v2WITH N FOR THE DIFFERENCE EQUATION AND

RUNGE-KUTTA PROCEDURES

N

2

3

4

5

6

8

10

16

24

32

40

60

100

Oifferenca
p rocedu

Using (24)

0.6060s

IJ.62006

0.62622

0.62949

0.63154

0.63372

0.63481

0.63605

0.63650

0.63667

0.63674

0.63682

0.63686

Iuat ion

as in [101”

0.5 SJ323

0.611504

0.62250

0.62766

0.63047

0.63327

0.63457

0.63598

0.63648

0.63665

0.63673

0.63682

0.63686

Runge-Kutta

Procedure to

solve (6]

0.63271

0.63572

0.63655

0.63675

0.63682

0.63686

0.63687

0.63688

0.63688

0.63688

or, denoting G(Rj) and f(Ri) by Gi and fi, respectively, with

Ri = ih, we can write (23) as

G i+l =2h {U26& - uz(l - b) - G; - Gi/ih} +G, _l i>l

(24)

with the boundary conditions at R = O giving

GO=O (25)

and

Gl=h
{ }

:6fo - ;(1 - b) . (26)

Table III shows the convergence of a typical set of calcula-

tions of the propagation constant b using the two difference

equation procedures and the Runge-Kutta procedure. The

calculations correspond to a parabolic index fiber [f(R)= R2 ]

with v = 3.0. As can be seen, of the two difference equation

procedures, the one using (24) shows a more rapid convergence

compared to the one using the difference equation of [10].

The Runge-Kutta procedure however, shows an extremely

rapid convergence. For example, with iV = 4 in the RK pro-

cedure, one obtains a better accuracy than with iV = 16 in the

difference equation procedure. Hence, even though the Runge-
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Kutta procedure requires a greater number of evaluations as

compared to the difference equation method for a given N,

these are more than compensated by the extremely small value

of N required to attain good accuracy.

Very recently, another numerical procedure to calculate b,

b’, and b“ has been reported by Cohen and Mammel [12].

In this procedure, b is calculated by a direct numerical inte-

gration of a second order differential equation obtained from

the scalar wave equation by suitably modifying it to facilitate

integration for all modes. To calculate b’, the stationarity

property of the Rayleigh quotient has been used, which gives

b’ in terms of integrals involving the profde function .f(l?) and

the field ~(R); these integrals, however, have to be evaluated

numerically. Further, b“ is obtained by a numerical differenti-

ation of the results obtained for b’ as a function of v. The

present procedure, instead, uses similar procedures for calcu-

lation of b, b’, and b“ and hence involves less computational

effort.

In summary, we have presented a numerical procedure to

evaluate the propagation constant and its derivatives for a

single mode fiber with an arbitrary index proffle. The pro-

cedure shows a rapid convergence with Step size used in the

numerical solution of the differential equation by the Runge-

Kutta procedure, To illustrate the procedure, we also used it

to evaluate the effect of an axial dip on the dispersion charac-

teristics of single mode fibers. Our results, in addition to de-

scribing the effect of the dip on the dispersion characteristics

also enable one to determine the validity of the perturbation

approach used earlier [9] ; indeed, for large dips, the perturba-

tion theory results are quite inaccurate and one should use

numerical methods. Further, in an attempt to compare the

convergence of the Runge-Kutta procedure with an earlier

reported difference equation ‘method [10], we have also ob-

tained a difference equation which gives more rapid conver-

gence than the difference equation in [10]. However, the

extremely rapid convergence of the Runge-Kutta procedure

still makes it more suitable than any of the difference equation

procedures.
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